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ABSTRACT

A novel 3D discriminant function is introduced as part of a ground clutter detection algorithm for

improving weather radar observations. The 3D discriminant function utilizes the phase fluctuations of the

received signals for horizontal and vertical polarizations and the dual-scan cross-correlation coefficient.

An optimal decision based on the 3D discriminant function is made using a simple Bayesian classifier to

distinguish clutter from weather signals. For convenience of use, a multivariate Gaussian mixture model is

used to represent the probability density functions of discriminant functions. The model parameters are

estimated based on the maximum likelihood using the expectation–maximization (ML-EM) method. The

performance improvements are demonstrated by applying the proposed detection algorithm to radar data

collected by the polarimetric Norman, Oklahoma (KOUN), weather radar. This algorithm is compared to

other clutter detection algorithms and the results indicate that, using the proposed detection algorithm,

a better probability of detection can be achieved.

1. Introduction

It is still a challenging issue to detect ground clutter

and mitigate its effects on weather observations. For

weather radar, ground clutter is the undesired echoes

from scatterers on the ground, which can significantly

bias the polarimetric weather radar measurements.

Ground clutter signals are typically statistically station-

ary in the time domain and mostly located around zero

Doppler velocity in the spectral domain. Traditionally, a

band-stop filter was employed to mitigate the ground

clutter effects (Groginsky and Glover 1980; Cao et al.

2012). However, some power components of weather

signals (around zero velocity) may fall into the stop band

of the filter and cause bias estimates of spectral moments

and polarimetric parameters (Siggia and Passarelli 2004;

Doviak and Zrnić 2006; Zhang 2016). Hence, to avoid

biases from unnecessary filtering, ground clutter loca-

tions need to be precisely identified.

Meischner (2002) introduced a static clutter map

method to identify clutter contaminated resolution

volumes. To take the weather condition into account

and improve the detection performance, Hubbert et al.

(2009a,b) developed a clutter mitigation decision (CMD)

algorithm, which includes three discriminant functions:

the reflectivity texture, clutter phase alignment, and the

number of reflectivity fluctuations (Steiner and Smith

2002), and uses them in combination for clutter detection.

Dual-polarization clutter detection algorithms are

more attractive because they can take advantage of the

polarization diversity. Ground clutter and weather sig-

nals have different polarimetric characteristics which

can be utilized to distinguish clutter from weather sig-

nals (Gourley et al. 2007; Park et al. 2009; Rico-Ramirez

andCluckie 2008). In Li et al. (2014), the dual-polarization

(DP) clutter detection algorithm is proposed based on

three discriminant functions: the copolar cross-correlation

coefficient rhv, power ratio (PR), and differential re-

flectivity ZDR. It is shown in Fig. 4 of Li et al. (2014) that

there is an overlapped area between clutter and weather

probability density functions (PDFs), for bothZDRand rhv.
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Also, the peak values of weather PDF and clutter PDF

are in the same range (i.e., near zero for ZDR and near

one for rhv). Furthermore, it is shown that the weather

PDFs have larger peak values than clutter PDFs (for

both ZDR and rhv). Consequently, it is clear that clut-

ter signals with near-zero ZDR values and near-one

rhv values would most likely be detected as weather

instead of clutter. Therefore, this can increase the

detection error rate and reduce the probability of

detection PD.

Realizing the difference in correlation time between

weather and clutter, Li et al. (2013) proposed the dual-

scan (DS) method to improve clutter detection. Taking

advantages of the information used in both DP and DS

methods, Golbon-Haghighi et al. (2016) developed the

DPDS by using the joint 2D PDF of rhv and r12, as a

discriminant function, which is computationally efficient

to use for the classification. The phase fluctuation index

is introduced in Golbon-Haghighi et al. (2018) and uses

the polynomial fitting function to discriminate clutter

from weather signals.

More recently, the spectral properties have been

considered to introduce new discriminant functions and

improve ground clutter detection algorithms (Cao et al.

2012; Zhang 2016; Li et al. 2011). In Li et al. (2013), the

spectrum clutter identification (SCI) algorithm is in-

troduced based on four discriminant functions: spectrum

power distribution, spectrum phase fluctuation, power

texture, and spectrum width texture. A dual-polarization

spectral decomposition technique is introduced in Wen

et al. (2017), to identify clutter from nonmeteorological

echoes such as chaff, birds, insects, and sea clutter. A

Bayesian radar-signal classifier is proposed in Falconi

et al. (2016) to identify ground clutter regarding its spa-

tial statistical features. In Warde and Torres (2014) and

Torres and Warde (2014), the clutter environment anal-

ysis using adaptive processing (CLEAN-AP) algorithm is

introduced to achieve a better performance for the clutter

detection. Bachmann (2008) introduced the differential

phase between the spectral coefficients of two spectra

from the even and odd samples for clutter identification.

A novel 3D discriminant function is introduced in this

paper to improve the performance of clutter detection

algorithms. The 3D discriminant function is introduced

based on the phase structure function for horizontal (h)

and vertical (v) polarizations and the dual-scan cross-

correlation coefficient. It is found that the 3D discrimi-

nant function has a good separation between clutter and

weather PDFs even for low values of the clutter to

weather signal ratio (CSR). The CSR is defined as the

ratio of the clutter power to the weather power, and

expressed in decibels (dB). Numerical simulations and

theory show that the phase variations of signals received

from the ground clutter are different from weather sig-

nals. The random location, motion, and distribution of

scatterers cause the amplitude and phase of the received

complex voltage to be random variables. The phase

fluctuations of clutter signals are typically slower than

that of the randomly distributed hydrometers. Hence,

the structure function for the phase fluctuations is in-

troduced to discriminate clutter from weather signals.

Therefore, it is expected that the 3D discriminant func-

tion based on the phase structure function (PSF) can

achieve a better performance gain for ground clutter

detection algorithms.

The PDFs of discriminant functionsmay change based

on weather conditions, types of clutter, antenna rotation

and radar parameters, and thus, the PDFs may need to

be updated based on different conditions. Also, com-

plete knowledge about the probabilistic structure of

class-conditional densities may not be available for real-

time implementations. Therefore, amultivariateGaussian

mixture model (GMM) is introduced in this paper to pa-

rameterize the class-conditional densities for the proposed

3D discriminant function. The complexity of the problem

is reduced significantly by using the GMM model. The

GMM parameters are estimated based on the maximum

likelihood using the expectation–maximization (ML-EM)

method.

The remainder of this paper is organized as follows: In

section 2, discriminant functions for the proposed clutter

detection algorithm are introduced. In section 3, the

implementation procedures of the algorithm are dis-

cussed, and the performance of the algorithm is evalu-

ated using controlled datasets collected by the Norman,

Oklahoma (KOUN), polarimetric radar. Conclusions are

drawn in section 4.

2. Discriminant functions

A new discriminant function is introduced in this

section to develop ground clutter detection algorithms.

Controlled training and testing datasets have been used

to estimate the PDF of discriminant functions. Training

datasets were collected on the nearly pure weather and

pure clutter conditions to estimate the ground truth and

obtain the class-conditional densities (the PDF of dis-

criminant functions) for the classification.

Controlled in-phase and quadrature-phase (I/Q)

datasets are created by matching and combining the

almost pure clutter and pure weather to find ground

truth. The nearly pure weather data was obtained by

collecting data at high elevation angles at the farther

ranges (over 50km) from the radar location, where

ground clutter can be neglected, while the nearly pure

clutter data was obtained at the low elevation angles
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(i.e., 0.58) under cold, clear-air conditions. The pure

weather data collected at ranges beyond ground clutter

(generally have negligible clutter) is collapsed to near

ranges, and can be combined with the specially collected

and edited clutter PPI without range collapsing (Golbon-

Haghighi et al. 2018; Li et al. 2013).We use other weather

and clutter datasets (testing datasets) to evaluate the

performance of the detection algorithm. Therefore, the

PDFs of discriminant functions are obtained from train-

ing datasets for clutter and weather signals, and then the

performance is evaluated and compared by applying the

PDFs to the testing datasets. The training and testing

weather datasets were collected by the KOUN WSR-

88D in snow conditions, and at 1.58 elevation angle at

1308 and 1402 UTC 9 February 2011, with two scans for

each time. The clutter datasets were collected in clear-

air conditions at low elevation angle (i.e., 0.58), at
0709 UTC 27 May 2010 and at 0046 UTC 4 February

2011. Figures 1 and 2 show reflectivity, Doppler velocity,

spectrum width, differential phase, dual-polarization

cross-correlation coefficient rhv, differential reflectivity

ZDR, power ratio (PR), dual-scan cross-correlation co-

efficient r12, and SNR for the clutter data collected at

0709 UTC 27 May 2010, and the weather data collected

at 1308 UTC 9 February 2011. To avoid noise effects,

I/Q data for resolution volumes with SNR less than

20 dB are subsequently discarded, and to provide a pure

clutter and weather fields, data in resolution volumes

contaminated by moving point objects (e.g., birds and

aircraft) are ignored by deleting the resolution volumes

FIG. 1. Radar clutter data collected at 0709 UTC 27May 2010: (top left) reflectivity, (top center) Doppler velocity, (top right) spectrum

width, (middle left) differential phase, (middle center) dual-polarization cross-correlation coefficient, (middle right) differential re-

flectivity, (bottom left) power ratio, (bottom center) dual-scan cross-correlation coefficient, and (bottom right) SNR.
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showing mean Doppler velocities jyrj . 1ms21 and

clutter-to-noise ratio less than 3dB. The dual scan cross-

correlation coefficient and the phase structure function

for h and v polarizations are introduced as discriminant

functions for detection algorithms in the next subsections.

To obtain the cross-correlation coefficient between

two scans, two sequential azimuthal scans with different

pulse repetition times (PRTs) are collected by theWSR-

88D. The short-PRT data (e.g., Ts25 0.973ms) are down-

sampled in order to be matched with its corresponding

long-PRT data (e.g., Ts1 5 3.10ms) (Golbon-Haghighi

et al. 2016).

a. Dual-scan cross-correlation coefficient

The dual-scan cross-correlation coefficient between

two time series’ I/Q data, from the same location is

defined as (Zhang 2016; Lei et al. 2012; Melnikov and

Zrnić 2007)

r
12h
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FIG. 2. Radar weather data collected at 1308 UTC 9 Feb 2011: (top left) reflectivity, (top center) Doppler velocity, (top right) spectrum

width, (middle left) differential phase, (middle center) dual-polarization cross-correlation coefficient, (middle right) differential re-

flectivity, (bottom left) power ratio, (bottom center) dual-scan cross-correlation coefficient, and (bottom right) SNR.
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where V represents the received complex echo signal

sample for the first or second scan; m signifies the echo

sample number, andM is the number of samples in dwell

time (i.e., the time used to make estimates of polari-

metric variables and spectral moments). The dual scan

cross-correlation coefficients for h polarization r12h and

v polarization r12v have mostly the same PDFs, and we

used r12 as the average of r12h and r12v (Zhang 2016; Li

et al. 2014). As normally expected, the PDF of r12 is

larger for clutter than that for weather signals, because

the signals received from ground clutter have a longer

correlation time than weather signals (Ice et al. 2009; Li

et al. 2013).

Narrow-band zero velocity weather signals W0 are

echoes from resolution volumes where the turbulence

and the mean wind radial shear is weak, with a mean

radial velocity close to zero; thus, these weather signals

commonly have a longer correlation time compared to

other weather signals (i.e., W). We considered W0 as a

separate weather class because their properties are

mostly similar to clutter signals, and thus are the most

challenging to distinguish from clutter.

Therefore, the following the three classes vi of echoes

are being considered for the classification:

1) C: Clutter,

2) W0: Narrow-band zero-velocity weather (i.e., jyrj #
2ms21 and sy # 2m s21),

3) W: Nonzero-velocity weather (i.e., jyrj . 2m s21 or

sy . 2ms21),

where jyrj and sy are the mean Doppler velocity and

the spectrum width, respectively (Doviak and Zrnić

2006; Hubbert et al. 2009a). Figure 3 shows the class-

conditional densities p(r12jvi), for three classes (i.e.,

vi 5 fC, W, W0g), obtained from training datasets. The

class label of each resolution volume for the almost pure

clutter and pure weather datasets, has been obtained by

using the DPDS algorithm (Golbon-Haghighi et al. 2016;

Li et al. 2013). Although the performance of the DPDS

algorithm is entirely acceptable for the controlled train-

ing datasets (due to the high PD for CSR . 0dB), all

PDFswere verified by the proposed PSF algorithm. It can

be seen from this figure that there is a small overlapped

range between clutter and weather PDFs, and the peaks

of the clutter and weather PDFs are in different ranges.

b. Phase structure function

The phase structure function is introduced as a novel

discriminant function to improve clutter detection al-

gorithms. The wave scattering from the randomly dis-

tributed hydrometers yields a rapidly fluctuating phase

due to the random size and location of scatterers and

turbulence with radial velocity (Figs. 4a,b). However,

the wave scattering from fixed scatterers on the ground

(i.e., ground clutter) produces a slow fluctuation in the

phase of receiving signals (Fig. 4c), due to the scanning

beam. As can be seen from Fig. 4, the phase fluctuations

for weather signals are stronger than that for ground

clutter. Therefore, we introduce the phase structure

function to distinguish clutter from weather signals. In

Fig. 4, the azimuth is equivalent to the sample time,

because the radar antenna is rotating azimuthally with a

constant elevation angle. The I/Q data for each resolu-

tion volume is represented by a complex voltage sample,

and the phase f (rad) can be calculated as

f5;V, where V5X2 jY5Ae2jf .

We define the phase structure function (PSF) for h and v

polarizations as

PSF
h
5

1

M
�
M21

m51

jf
h
(m1 1)2f

h
(m)j2 ,

PSF
v
5

1

M
�
M21

m51

jf
v
(m1 1)2f

v
(m)j2 .

(2)

The phase structure function is obtained from the

average of angular separations between consecutive

phases for each resolution volume. Figure 5 shows the

joint 2D class-conditional densities for the PSF for h

and v polarizations based on the structure function for

clutter and weather signals. Parzen windows have been

used to obtain the joint class-conditional densities for

FIG. 3. Dual-scan cross-correlation coefficient r12.
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each class [i.e., p(PSFh, PSFvjC), p(PSFh, PSFvjW),

p(PSFh, PSFvjW0)] from the training datasets (Duda

et al. 2012). It is shown that the clutter PDF has mostly

near zero values and weather PDFs have larger values

with a peak around 7 for W. Therefore, there is a good

separation between clutter and weather PDFs, and in

the next section we show that the PSF as a discriminant

function can improve the probability of detection com-

pared to other existing algorithms. The PDFs of dis-

criminant functions may change based on the weather,

types of clutter, antenna rotation and the radar param-

eters, and thus, may need to be updated based on the

current condition (Theodoridis and Koutroumbas 2008;

McLachlan and Peel 2004). Therefore, to make the PSF

algorithm more efficient to use, a multivariate GMM

model is used to parameterize the PDFs of discriminant

functions. The GMM parameters are estimated based

on the ML-EMmethod (Theodoridis and Koutroumbas

2008; Duda et al. 2012). Figure 6 shows the GMMmodel

for the joint 2D class-conditional densities of [PSFh, PSFv],

for all classes.

In Fig. 6, the GMM model is obtained from the 2D

lognormal distribution function, and the GMM statisti-

cal parameters (i.e., mean and covariance vectors) are

estimated based on the ML-EM method for each class.

Generally, the bivariate (two-dimensional) Gaussian

distribution for a 2D vector [X, Y] can be calculated as

(Theodoridis and Koutroumbas 2008; Duda et al. 2012):

p(X ,Y)5
1

2ps
X
s
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2XY

p exp

�
2

1

2(12 r2XY)

�
exp

"
(X2m

X
)2

s2
X

1
(Y2m

Y
)2

s2
Y

2
2r
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(X2m

X
)(Y2m
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s
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#
,
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Sb

 
s2
X s

X
s
Y
r
XY

s
X
s
Y
r
XY

s2
Y

!
,

(3)

where m and S are the mean and covariance, respectively,

and rXY is the correlationbetweenX andY. InFig. 6, [X,Y]

vector is considered as [PSFh, PSFv], and the estimated

parameters for the GMM are presented in Table 1.

There are several advantages of parameterizing the

PDF of discriminant functions:

1) it can be efficiently trained in different conditions,

2) the classification parameters can be estimated by a

relatively small amount of training data, and

3) the Maximum Likelihood algorithm is used for

parameter estimation and the maximum a posteriori

(MAP) estimator can be employed in the case

that the a priori distributions are not equal for all

classes.

The same parameter estimation has been used to es-

timate the joint 3D class-conditional densities for dis-

criminant functions [i.e., p(PSFh, PSFv, r12jC), p(PSFh,

PSFv, r12jW), p(PSFh, PSFv, r12jW0)] and the GMM

model is shown in Figs. 7 and 8.

The joint 3D PDF of the multivariate Gaussian distri-

bution can be obtained as (Theodoridis and Koutroumbas

2008; Duda et al. 2012)

FIG. 4. Phase of the I/Q data for (a) nonzero-velocity weather W, (b) zero-velocity weather W0, and (c) clutter C signals.
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where Z5 [Z1,Z2,Z3]
T 5 [PSFh, PSFv, r12]

T. The fitted

parameters of the 3D PDF for the GMM model are

presented in Table 2. As normally expected, the weather

signals have smaller r12 with larger PSF values.

Additionally, the clutter has smaller PSF values with a

wider range and larger values of r12. Thus, it is shown

that the joint 3D PDF of clutter and weather signals

are separated in terms of the proposed 3D discriminant

function. Other visualizations of the class-conditional

densities are shown in Figs. 8 and 9. Therefore, the PSF

detection algorithm based on the 3D PDF can efficiently

reduce the error rate and improve the probability of

detection compared to other detection algorithms. Also,

it can be seen from Figs. 6 and 9 that the joint 2D PDFs

have overlapped areas between clutter and weather

PDFs and thus, it is normally expected that the error rate

for the PSF algorithm based on the joint 2D PDF ismore

than that for the 3D PDF. Figure 10 shows the joint 2D

class-conditional densities based on [r12, min(PSFh,

PSFv)] and [r12, PSFh]. There is a tendency for PSFh and

PSFv to take on values very close to zero (see Fig. 5).

Therefore, it is more efficient to use min(PSFh, PSFv)

with r12, for the joint 2D discriminant function, instead

of using PSFh with r12. As can be seen from Fig. 10a, the

2D PDF based on min(PSFh, PSFv) can concentrate the

C class data nearer the origin while preserving the sep-

aration with W0 and W classes. In the next section, the

probability of detection for our proposed PSF clutter

detection algorithm is presented and compared to other

detection algorithms.

3. Bayes optimal decision

The joint 3D PDF as a discriminant function has been

calculated from training datasets, in the previous section, in

order to be used as a reference for the Bayesian classifier.

TABLE 1. Fitted class-conditional density parameters for the

2D GMM.

Variables Class PSFh PSFv

m C 0.1151 0.1151

W 6.4778 6.4286

W0 2.6999 2.6242

S C 0.4973 0.0003

0.0003 0.8807

W 0.5744 0.3126

0.3126 0.5816

W0 0.3615 0.2940

0.2940 0.3359

FIG. 6. Gaussian mixture model for the joint 2D class-

conditional densities: p(PSFh, PSFvjC), p(PSFh, PSFvjW),

and p(PSFh, PSFvjW0).FIG. 5. Joint 2D class-conditional densities for the phase

structure function: p(PSFh, PSFvjC), p(PSFh, PSFvjW), and

p(PSFh, PSFvjW0).
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The observational discriminant vector Xo 5 (PSFo
h, PSF

o
v ,

ro12)is calculated from Eqs. (1) and (2) for each resolu-

tion volume. Given an observation of the discriminants

Xo, the classifier detectsX5Xo belongs to the classvi, if

and only if the 3D PDF for vi is more than that for other

classes. Therefore, X 5 Xo belongs to the C (or clutter)

if and only if

p(v
i
jXo). p(v

j
jXo), for i, j 2 [C,W,W

0
], j 6¼ i . (5)

According to the Bayes rule, the probability of the ith

class given the observed Xo can be obtained as (Miller

1966)

p(v
i
jX5Xo)5

p(X5Xojv
i
)p(v

i
)

p(X5Xo)
. (6)

It is assumed that the a priori probabilities p(vi) are

equal for all classes, that is, p(C)5 p(W)5 p(W0)5 1/3.

Furthermore, as p(X 5 Xo) is the same for all classes,

Eq. (6) can be rewritten as

p(v
i
jX5Xo)5Kp(X5Xojv

i
) , (7)

where K5 1/[3p(X5Xo)] is constant for all classes.

Therefore, p(vijX5Xo) is proportional to the likeli-

hood function of classes with respect to X5Xo, that is,

p(X5Xojvi). The likelihood function can be obtained

from the 3D PDFs shown in Fig. 7, for each class. Thus,

we have

FIG. 8. Other visualizations for the GMM model.

FIG. 7. GMM model for the 3D class-conditional densities: p(PSFh,

PSFv, r12jC), p(PSFh, PSFv, r12jW), and p(PSFh, PSFv, r12jW0).

TABLE 2. Fitted class-conditional density parameters for the

3D GMM.

Variables Class r12 PSFh PSFv

m C 0.9815 0.1500 0.1500

W 0.1867 6.4744 6.4420

W0 0.2981 2.6460 2.5763

S C 0.1872 0.0001 0.0010

0.0001 1.1592 0.0003

0.0010 0.0003 1.5172

W 0.0080 20.0080 0.0009

20.0008 0.4414 0.2917

0.0009 0.2917 0.4579

W0 0.0139 0.0017 20.0010

0.0017 0.2062 0.1592

20.0010 0.1592 0.1730

FIG. 9. 2D-visualization of the joint 3D PDF for the GMM model.
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p(X5Xojv
i
)5 p(PSFo

h, PSF
o
v, r

o
12jvi

). (8)

Therefore, p(X5Xojvi) is calculated for all classes,

and the class corresponding to the maximum probability

value will be selected as the classification decision. Thus,

we can infer that the Bayesian classifier assigns X5Xo

to ‘‘C’’ only if

p(PSFo
h, PSF

o
v, r

o
12jC). p(PSFo

h, PSF
o
v, r

o
12jW) and

p(PSFo
h, PSF

o
v, r

o
12jC). p(PSFo

h,PSF
o
v , r

o
12jW0

). (9)

The detection algorithm is summarized in the fol-

lowing steps:

1) Calculate the signal-to-noise ratio (SNR) for the current

resolution volume. If the SNR is less than 20dB, the

current gate is considered to not have a significant signal

compared to noise power, and compute the SNR for the

next range resolution volume. Otherwise, go to step 2.

2) Calculate the observed discriminant vector for the

current gate, using the 3D PDF shown in Fig. 7:

p(X5XojC)5 p(PSFo
h, PSF

o
v, r

o
12jC),

p(X5XojW)5 p(PSFo
h, PSF

o
v, r

o
12jW), and

p(X5XojW
0
)5 p(PSFo

h, PSF
o
v, r

o
12jW0

).

3) The data for the current gate is clutter contaminated

if

p(X5XojC). p(X5XojW) and

p(X5XojC). p(X5XojW
0
) .

Thus, a ground clutter filter (Golbon-Haghighi and

Zhang 2019) needs to be applied to mitigate clutter

effects and restore weather estimates. Otherwise, the

data are not contaminated and return to step 1 for the

next gate.

The performance of the clutter detection algorithm is

evaluated using the testing control datasets collected by

the KOUN WSR-88D at 1402 UTC 9 February and

0047 UTC 4 February 2011. The same procedure has

been used to obtain the ground truth from the combi-

nation of pure clutter and pure weather data for the

testing dataset. Therefore, the ground truth will be used

as a reference to obtain the CSR and compare the per-

formance of detection algorithms by changing the CSR

value. Our proposed algorithm is compared to other

clutter detection algorithms, such as DPDS, DP, DS,

and CMD, presented in Golbon-Haghighi et al. (2016),

Li et al. (2013, 2014), and Hubbert et al. (2009b).

The probability of detection PD and the probability of

false alarm PFA is defined as

P
D
5

TP

TP1FN
and P

FA
5

FP

FP1TN
, (10)

where T and F stand for true and false clutters detected

by the algorithm, and P and N stand for the clutter de-

cision made by the algorithm. The probability of false

alarm for the controlled testing datasets are presented in

FIG. 10. Joint 2D class-conditional densities: (a) p[r12, min(PSFh, PSFv)jvi] and (b) p(r12, PSFhjvi).

TABLE 3. PFA (%) for the testing dataset by using the DPDS, DP, DS, and CMD algorithms.

3D PSF 3D PSF GMM 2D PSF GMM 1D PSF GMM DPDS DP DS CMD

PFA 0.09 0.14 0.14 0.17 0.21 0.47 0.39 0.53
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Table 3. It is shown that the proposed 3D PSF clutter

detection algorithm produces the lowest PFA compared

to other clutter detection algorithms.

Figure 11 illustrates the probability of detection PD

versus CSR for the PSF, DPDS, DP, DS, and CMD

algorithms. It is clear that the PD rate should increase

with increasing the clutter power or CSR. As shown

in Fig. 11, there is a significant improvement in PD,

using the proposed PSF clutter detection algorithm

compared to other existing detection algorithms. The

performance improvement for the PSF algorithm is

due to the good separation between the clutter and

weather PDFs, as shown in Figs. 5–8. Figure 11 also

compared the proposed PSF clutter detection algo-

rithm to the PSF based on the joint 2D PDFs, and

3–1D PDF (dashed lines). The joint 2D PDFs have

overlapped areas between clutter and weather PDFs

(see Figs. 6 and 9) and therefore, the probability of

detection for the PSF algorithms based on the joint 2D

PDFs are less than that of the joint 3D PDF. The PSF

algorithm based on the joint 2D PDF of [min(PSFh,

PSFv), r12], as discriminant function, has a better

performance in compared to other 2D PDF discrimi-

nant functions, and the PSF algorithm based on the

joint 2D PDF of [(PSFh, PSFv)] can be used in the case

that dual-scan data (or r12 parameter) is not available

for the radar system. Also, the results are compared to

the case of 3–1D (nonjoint PDFs of discriminant

functions), in which the PDFs are separately calcu-

lated and considered to make a decision based on the

Bayesian classifier.

As can be seen from Fig. 12, the probability of clutter

detection based on the 3D discriminant function has an

outstanding performance because there is a good sep-

aration between the clutter and weather PDFs, as

shown in Fig. 7. The probability of clutter detection for

the proposed PSF algorithm is also compared to the

PSF algorithms based on the GMM model (dashed

lines). It should be noted that the GMMmodel reduced

the computational complexity by parameterizing the

PDF of discriminant functions. Although the proba-

bility of detection for the GMM is less than that for the

PSF, theGMM still has a better performance compared

to other existing clutter detection algorithms, such as

DPDS, DP, DS, and CMD (Golbon-Haghighi et al.

2016; Li et al. 2013, 2014; Hubbert et al. 2009a).

Moreover, the PSF detection algorithms based on the

2Dor 1DPDFs still have a better performance compared

to other existing detection algorithms, and can be used in

case the dual-polarization and/or dual-scan datasets are

not available for the weather radar. Figure 13 shows the

clutter maps for the proposed PSF algorithm and com-

pared to other clutter detection algorithms. The results of

the PSF 3D algorithm are most similar to the ground

truth in comparison to other detection algorithms. In this

figure, blue points show ‘‘true positive’’ samples and

represent the number of clutter samples (as shown in the

ground truth) which are correctly detected by the algo-

rithm. Yellow points (false negative) are the samples that

are falsely detected as weather instead of clutter by the

detection algorithm, and green points (false positive) are

FIG. 11. PD vs CSR compared to other detection methods. FIG. 12. PD for the PSF clutter detection algorithms compared to

PSF-GMM detection algorithms.
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the samples that are falsely detected as clutter instead of

weather, by the algorithm.

4. Conclusions

In this paper, we have proposed a 3D discriminant

function to improve the performance of clutter detec-

tion algorithms for weather radars. The phase structure

function was introduced as an exceptional discriminant

function for clutter detection algorithms. It was shown

that this discriminant function had a very good separation

between clutter and weather PDFs, even for low CSR

values. The PSF has been jointly combined with the dual-

scan cross-correlation coefficient to form a unique 3D

discriminant function. A multivariate Gaussian mixture

model was introduced to parameterize clutter and

weather PDFs. The parameters of GMM model were

estimated based on the ML-EM method. A simple

Bayesian classifier was defined to make an optimal de-

cision for the proposed clutter detection algorithm.

Practical datasets collected by the KOUN polarimetric

WSR-88D were utilized to verify the performance im-

provement of the proposed detection algorithm com-

pared to other detection algorithms. The KOUN data

represents surrounding terrain including clutter from

urban, wooded, and prairie areas. The statistical prop-

erties of the PSF might be applied to improve clutter-

filtering algorithms. Also, the PSF algorithm can be

generalized to improve target detection algorithms. The

performance of the PSF algorithm to detect clutter from

FIG. 13. Clutter maps using (a) 3D PSF algorithm, (b) 3D PSF GMM algorithm, (c) 2D PSF GMM algorithm (PSFh, PSFv),

(d) 1D PSF GMM algorithm (PSFh), (e) DPDS algorithm, (f) DP algorithm, (g) DS algorithm, (h) CMD algorithm, and

(i) ground truth.
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heavily foliage woods under different wind conditions

should be addressed, in future works.
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Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar Weather

Observations. 2nd ed. Dover, 592 pp.

Duda, R.O., P. E.Hart, andD.G. Stork, 2012:Pattern Classification.

John Wiley & Sons, 688 pp.

Falconi, M. T., M. Montopoli, and F. S. Marzano, 2016: Bayesian

statistical analysis of ground-clutter for the relative calibration

of dual polarization weather radars. Eur. J. Remote Sens., 49,
933–953, https://doi.org/10.5721/EuJRS20164949.

Golbon-Haghighi, M.-H., and G. Zhang, 2019: Dual polarization

ground clutter filtering. 35th Conf. on Environmental Infor-

mation Processing Technologies, Phoenix, AZ,Amer.Meteor.

Soc., 833, https://ams.confex.com/ams/2019Annual/webprogram/

Paper350230.html.

——, ——, Y. Li, and R. J. Doviak, 2016: Detection of ground

clutter from weather radar using a dual-polarization and

dual-scan method.Atmosphere, 7, 83, https://doi.org/10.3390/

atmos7060083.

——, ——, and R. J. Doviak, 2018: Ground clutter detection for

weather radar using phase fluctuation index. IEEE Trans.

Geosci. Remote Sens., 57, 2889–2895, https://doi.org/10.1109/

TGRS.2018.2878378.

Gourley, J. J., P. Tabary, and J. P. du Chatelet, 2007: A fuzzy logic

algorithm for the separation of precipitating from non-

precipitating echoes using polarimetric radar observations.

J. Atmos. Oceanic Technol., 24, 1439–1451, https://doi.org/
10.1175/JTECH2035.1.

Groginsky, H. L., and K. M. Glover, 1980: Weather radar canceller

design. Preprints, 19th Conf. on Radar Meteorology, Miami

Beach, FL, Amer. Meteor. Soc., 192–198.

Hubbert, J. C., M. Dixon, S. M. Ellis, and G. Meymaris, 2009a:

Weather radar ground clutter. Part I: Identification, modeling,

and simulation. J. Atmos. Oceanic Technol., 26, 1165–1180,

https://doi.org/10.1175/2009JTECHA1159.1.

——, ——, and ——, 2009b: Weather radar ground clutter. Part II:

Real-time identification and filtering. J. Atmos.Oceanic Technol.,

26, 1181–1197, https://doi.org/10.1175/2009JTECHA1160.1.

Ice, R. L., and Coauthors, 2009: Automatic clutter mitigation in the

wsr-88d, design, evaluation, and implementation. 34th Conf.

on Radar Meteorology, Williamsburg, VA, Amer. Meteor.

Soc., P5.3, https://ams.confex.com/ams/34Radar/techprogram/

paper_155409.htm.

Lei, L., G. Zhang, R. J. Doviak, R. Palmer, B. L. Cheong, M. Xue,

Q. Cao, and Y. Li, 2012: Multilag correlation estimators for

polarimetric radar measurements in the presence of noise.

J. Atmos. Oceanic Technol., 29, 772–795, https://doi.org/

10.1175/JTECH-D-11-00010.1.

Li, Y., G. Zhang, and R. J. Doviak, 2011: A new approach to detect

the ground clutter mixed with weather echoes. 2011 IEEE

RadarCon (RADAR), Kansas City, MO, IEEE, 622–626,

https://doi.org/10.1109/RADAR.2011.5960612.

——, ——, ——, L. Lei, and Q. Cao, 2013: A new approach to

detect ground cluttermixedwith weather signals. IEEETrans.

Geosci. Remote Sens., 51, 2373–2387, https://doi.org/10.1109/

TGRS.2012.2209658.

——, ——, and ——, 2014: Ground clutter detection using the

statistical properties of signals received with a polarimetric

radar. IEEE Trans. Sig. Proc., 62, 597–606, https://doi.org/

10.1109/TSP.2013.2293118.

McLachlan, G., and D. Peel, 2004: Finite Mixture Models. John

Wiley & Sons, 419 pp.

Meischner, P., 2002: Weather Radar Principles and Advanced

Applications. Springer-Verlag, 337 pp.
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